Open GL의 기본적인 코드는
https://developer.android.com/develop/ui/views/graphics/opengl
위 사이트에 공개된 코드를 사용하였다.
MainActivity.java
package com.example.clones;
import androidx.appcompat.app.AppCompatActivity;
import android.opengl.GLSurfaceView;
import android.os.Bundle;
public class MainActivity extends AppCompatActivity {
private GLSurfaceView gLView;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// Create a GLSurfaceView instance and set it
// as the ContentView for this Activity.
gLView = new MyGLSurfaceView(this);
setContentView(gLView);
}
}
MyGLSurfaceView.java
package com.example.clones;
import android.content.Context;
import android.opengl.GLSurfaceView;
class MyGLSurfaceView extends GLSurfaceView {
private final MyGLRenderer renderer;
public MyGLSurfaceView(Context context){
super(context);
// Create an OpenGL ES 2.0 context
setEGLContextClientVersion(2);
renderer = new MyGLRenderer();
// Set the Renderer for drawing on the GLSurfaceView
setRenderer(renderer);
}
}
MyGLRenderer.java
package com.example.clones;
import android.opengl.GLES20;
import android.opengl.GLSurfaceView;
import android.opengl.Matrix;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
public class MyGLRenderer implements GLSurfaceView.Renderer {
private clones_animation mClones_animation;
// vPMatrix is an abbreviation for "Model View Projection Matrix"
private final float[] vPMatrix = new float[16];
private final float[] projectionMatrix = new float[16];
private final float[] viewMatrix = new float[16];
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
// Set the background frame color
GLES20.glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
mClones_animation = new clones_animation();
}
public void onDrawFrame(GL10 unused) {
// Redraw background color
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
// Set the camera position (View matrix)
Matrix.setLookAtM(viewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
// Calculate the projection and view transformation
Matrix.multiplyMM(vPMatrix, 0, projectionMatrix, 0, viewMatrix, 0);
// call it 25 times per second
mClones_animation.draw(vPMatrix);
}
public void onSurfaceChanged(GL10 unused, int width, int height) {
GLES20.glViewport(0, 0, width, height);
float ratio = (float) width / height;
// this projection matrix is applied to object coordinates
// in the onDrawFrame() method
Matrix.frustumM(projectionMatrix, 0, ratio, -ratio, -1, 1, 3, 7);
}
public static int loadShader(int type, String shaderCode){
// create a vertex shader type (GLES20.GL_VERTEX_SHADER)
// or a fragment shader type (GLES20.GL_FRAGMENT_SHADER)
int shader = GLES20.glCreateShader(type);
// add the source code to the shader and compile it
GLES20.glShaderSource(shader, shaderCode);
GLES20.glCompileShader(shader);
return shader;
}
}
clones_animation.java
package com.example.clones;
import android.opengl.GLES20;
import android.opengl.Matrix;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
public class clones_animation {
private final String vertexShaderCode =
// This matrix member variable provides a hook to manipulate
// the coordinates of the objects that use this vertex shader
"uniform mat4 uMVPMatrix;" +
"attribute vec4 vPosition;" +
"void main() {" +
// the matrix must be included as a modifier of gl_Position
// Note that the uMVPMatrix factor *must be first* in order
// for the matrix multiplication product to be correct.
" gl_Position = uMVPMatrix * vPosition;" +
'}';
// Use to access and set the view transformation
private int vPMatrixHandle;
private final float[] mTranslationMatrix = new float[16];
private final float[] result_mvpMatrix_translation = new float[16];
private final float[] mRotationMatrix = new float[16];
private final float[] result_mvpMatrix_rotation = new float[16];
private final float[] result_mvpMatrix_translation_rotation = new float[16];
private final float[] mRotationMatrix90 = new float[16];
private final float[] result_mvpMatrix_translation_rotation90 = new float[16];
private FloatBuffer vertexBuffer,house_vertexBuffer;
private final int mProgram;
private int positionHandle;
private int colorHandle;
private final int vertexStride = COORDS_PER_VERTEX * 4; // 4 bytes per vertex
// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;
static int vertex_number = 1000;
static float vertexes_coordinates[] = new float[vertex_number * 3];
float color_matrix[] = new float[4];
///색의 RGB 값을 넣어준 2차원 배열 생성
float colors[][] = {{0.6f,0.6f, 0.6f, 1.0f}, ///// gray color : color [0][]
{0.0f,0.0f, 1.0f, 1.0f}, ///// blue color : color [1][]
{0.0f,1.0f, 0.0f, 1.0f}, ///// green color : color [2][]
{1.0f,0.0f, 0.0f, 1.0f}, ///// red color : color [3][]
{0.0f,0.0f, 0.0f, 1.0f}, ///// black color : color [4][]
{1.0f,1.0f, 0.0f, 1.0f}}; ///// yellow color : color [5][]
//원하는 색 배열로 지정해줌
int object_color[][] = {{3,3,3,3}, ///// ellipse 1: (red + red + red + red)
{1,3,1,3}, ////ellipse 2: (blue +red)
{1,1,3,3}, ////ellipse 3: (blue + blue + red + red)
{5,4,2,0}, ////ellipse 4: (yellow + black + green + gray)
};
//0이 큰원, 13이 작은 원
int object_shape[][] = {{0,0,13,13}, ///// ellipse 1: (gray + green)
{13,0,13,0}, ////ellipse 2: (blue +red)
{0,0,0,0}, ////ellipse 3: (black +yellow)
{13,13,13,13}, ////ellipse 4: (blue +black)
};
//// Animation setup ///
//// make clones ////
//// x , y
///원 4개의 좌표 설정해주는거임 (겹치면 큰거는 보이는데 똑같은 사이즈이면 마지막에 실행한게 최종적으로 뜸)
// float object_centers[][] = {{0.3f, 0.3f}, ///// object 1
// {0.3f, -0.3f}, ///// object 2
// {-0.3f,0.3f}, ///// object 3
// {-0.3f,-0.3f}}; ///// object 4
//원 4개의 좌표 설정(원 3, 4 겹치게 설정)
float object_centers[][] = {{0.3f, 0.3f}, ///// object 1
{0.3f, -0.3f}, ///// object 2
{-0.3f,0.0f}, ///// object 3
{-0.3f,-0.0f}}; ///// object 4
//원 위치 조절하는거 (두개 동일한 값 넣어주면 같이 움직임)
float object_d_xy[][] = { {0.0f, 0.0f}, ///// object 1
{0.0f, 0.0f}, ///// object 2
{0.0f,0.001f}, ///// object 3
{0.0f,0.001f}}; ///// object 4
float Angles[] = {0.0f, 0.0f, 0.0f,0.0f};
//제자리에서 회전
float d_Angles[] = {1.0f, -3.0f, -2.0f,0.5f};
//1/4원짜리 회전하는 각도
float Quard[] = {0.0f,90.0f,180.0f,270.0f};
static float house_vertex_coor[] = { // in counterclockwise order:
0.6f, 0.3f, 0.0f, // 지붕 v0
-0.6f, 0.3f, 0.0f, // v1
0.0f, 0.6f, 0.0f, // v2
0.45f, 0.3f, 0.0f, //벽면 v3
0.45f, -0.3f, 0.0f, //v4
-0.45f, 0.3f, 0.0f, //v6 => v5 (strip 사용하면서 사각형만드려면 점 위치 바꿔줘야함)
-0.45f, -0.3f, 0.0f, //v5 => v6
0.0f, 0.2f, 0.0f, // 창틀 v7
-0.35f, 0.2f, 0.0f, //v8
0.0f, -0.05f, 0.0f, //v9
-0.35f, -0.05f, 0.0f, //v10
-0.02f, 0.18f, 0.0f, // 창문 v11
-0.33f, 0.18f, 0.0f, //v12
-0.02f, -0.03f, 0.0f, //v13
-0.33f, -0.03f, 0.0f, //v14
-0.16f, 0.18f, 0.0f, // 창문 중간선 v15
-0.18f, 0.18f, 0.0f, //v16
-0.16f, -0.03f, 0.0f, //v17
-0.18f, -0.03f, 0.0f, //v18
0.35f, 0.2f, 0.0f, // 문 v19
0.15f, 0.2f, 0.0f, //v20
0.35f, -0.2f, 0.0f, //v21
0.15f, -0.2f, 0.0f, //v22
0.33f, 0.18f, 0.0f, // 창문 v23
0.17f, 0.18f, 0.0f, //v24
0.33f, 0.05f, 0.0f, //v25
0.17f, 0.05f, 0.0f, //v26
}; //집 만들기
// Set color with red, green, blue and alpha (opacity) values
//float color[] = { 0.63671875f, 0.76953125f, 0.22265625f, 1.0f };
//지붕 색 정하기 (rgb값/255.0f)
float roof_color[] = {160/255.0f, 160/255.0f, 160/255.0f, 1.0f };
float wall_color[] = {224/255.0f, 224/255.0f, 224/255.0f, 1.0f };
float wood_color[] = {105/255.0f, 51/255.0f, 0/255.0f, 1.0f };
float window_color[] = {204/255.0f, 229/255.0f, 255/255.0f, 1.0f };
public clones_animation() {
int vertexShader = MyGLRenderer.loadShader(GLES20.GL_VERTEX_SHADER,
vertexShaderCode);
int fragmentShader = MyGLRenderer.loadShader(GLES20.GL_FRAGMENT_SHADER,
fragmentShaderCode);
// create empty OpenGL ES Program
mProgram = GLES20.glCreateProgram();
// add the vertex shader to program
GLES20.glAttachShader(mProgram, vertexShader);
// add the fragment shader to program
GLES20.glAttachShader(mProgram, fragmentShader);
// creates OpenGL ES program executables
GLES20.glLinkProgram(mProgram);
float d_angle = (float) Math.PI/20;
//// Circle 1
float R_circle_1 = 0.2f;
int index = 0;
vertexes_coordinates[index] = 0.0f; //// p44
vertexes_coordinates[index+1] = 0.0f; //// p0
vertexes_coordinates[index+2] = 0.0f; //// p0
index = index + 3;
//// setup vertexes p1 - pn
for (float angle = 0.0f; angle<=Math.PI/2 + d_angle; angle = angle + d_angle)
{
vertexes_coordinates[index] = R_circle_1*(float)Math.cos(angle);
vertexes_coordinates[index+1] = R_circle_1*(float)Math.sin(angle);
vertexes_coordinates[index+2] = 0.0f;
index = index + 3; //// index = 9
}
//// Circle 2
float R_circle_2 = 0.15f;
vertexes_coordinates[index] = 0.0f; //// p44
vertexes_coordinates[index+1] = 0.0f; //// p0
vertexes_coordinates[index+2] = 0.0f; //// p0
index = index + 3;
//// setup vertexes p1 - pn
for (float angle = 0.0f; angle<=Math.PI/2 + d_angle; angle = angle + d_angle)
{
vertexes_coordinates[index] = R_circle_2*(float)Math.cos(angle);
vertexes_coordinates[index+1] = R_circle_2*(float)Math.sin(angle);
vertexes_coordinates[index+2] = 0.0f;
index = index + 3; //// index = 9
}
///// Add circle 1 vertexes to vertexBuffer_circle_1
// initialize vertex byte buffer for shape coordinates
ByteBuffer bb1 = ByteBuffer.allocateDirect(
// (number of coordinate values * 4 bytes per float)
vertexes_coordinates.length * 4);
// use the device hardware's native byte order
bb1.order(ByteOrder.nativeOrder());
// create a floating point buffer from the ByteBuffer
vertexBuffer = bb1.asFloatBuffer();
// add the coordinates to the FloatBuffer
vertexBuffer.put(vertexes_coordinates);
// set the buffer to read the first coordinate
vertexBuffer.position(0);
ByteBuffer bb2 = ByteBuffer.allocateDirect(
// (number of coordinate values * 4 bytes per float)
house_vertex_coor.length * 4);
// use the device hardware's native byte order
bb2.order(ByteOrder.nativeOrder());
// create a floating point buffer from the ByteBuffer
house_vertexBuffer = bb2.asFloatBuffer();
// add the coordinates to the FloatBuffer
house_vertexBuffer.put(house_vertex_coor);
// set the buffer to read the first coordinate
house_vertexBuffer.position(0);
}
public void draw(float[] mvpMatrix) {
// Add program to OpenGL ES environment
GLES20.glUseProgram(mProgram);
// get handle to vertex shader's vPosition member
positionHandle = GLES20.glGetAttribLocation(mProgram, "vPosition");
// Enable a handle to the triangle vertices
GLES20.glEnableVertexAttribArray(positionHandle);
// get handle to fragment shader's vColor member
colorHandle = GLES20.glGetUniformLocation(mProgram, "vColor");
//display a house(백그라운드에 집 추가해줌)
//load vertexas
GLES20.glVertexAttribPointer(positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
vertexStride, house_vertexBuffer);
//// Implement the effect of rotation and projection (집이 같이 움직이 않도록 mvpMatrix로 바꿔줘야 안 움직이고 백그라운드에 위치할 수 있게함)
GLES20.glUniformMatrix4fv(vPMatrixHandle, 1, false, mvpMatrix, 0);
// Set color for drawing the triangle (지붕 만드는 삼각형, 바꾼 색 넣어줌)
GLES20.glUniform4fv(colorHandle, 1, roof_color, 0);
// Draw the roof (지붕 그리기)
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 3);
// Draw the wall (벽면 그리기)
GLES20.glUniform4fv(colorHandle, 1, wall_color, 0); //여기서 색 안바꿔주면 앞에서 지정한 색으로 만들어짐
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 3, 4); //삼각형 두개 합쳐줌
//3 4 5 하나, 3 5 6 하나 만들어짐 -> GL_TRIANGLE_FAN
// Draw the wood (창틀 그리기)
GLES20.glUniform4fv(colorHandle, 1, wood_color, 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 7, 4); //삼각형 두개 합쳐줌
// Draw the windom (창문 그리기)
GLES20.glUniform4fv(colorHandle, 1, window_color, 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 11, 4); //삼각형 두개 합쳐줌
// Draw the wood (중간 창틀 그리기)
GLES20.glUniform4fv(colorHandle, 1, wood_color, 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 15, 4); //삼각형 두개 합쳐줌
// Draw the door (문 그리기)
GLES20.glUniform4fv(colorHandle, 1, wood_color, 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 19, 4); //삼각형 두개 합쳐줌
// Draw the window for door (문에 있는 창문 그리기)
GLES20.glUniform4fv(colorHandle, 1, window_color, 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 23, 4); //삼각형 두개 합쳐줌
// get handle to shape's transformation matrix
vPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
//// Load vertexes ////
GLES20.glVertexAttribPointer(positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
vertexStride, vertexBuffer);
for (int object_ID = 0; object_ID<4;object_ID++) //// object_ID = 0,1,2,3
{
//// Move the center of the screen using glTranslation
Matrix.setIdentityM(mTranslationMatrix, 0);
Matrix.setIdentityM(mRotationMatrix, 0);
Matrix.rotateM(mRotationMatrix, 0, Angles[object_ID], 0, 0, -1.0f);
//// float Angles[] = {0.0f, 45.0f, 90.0f,10.0f};
//미리 설정해둔 object_centers좌표로 설정되도록 해줌
Matrix.translateM(mTranslationMatrix, 0, object_centers[object_ID][0], object_centers[object_ID][1], 0.0f); /// x and y are the variables of time
Matrix.multiplyMM(result_mvpMatrix_translation, 0, mvpMatrix, 0, mTranslationMatrix, 0);
Matrix.multiplyMM(result_mvpMatrix_translation_rotation, 0, result_mvpMatrix_translation, 0, mRotationMatrix, 0);
//// Implement the effect of translation and projection
GLES20.glUniformMatrix4fv(vPMatrixHandle, 1, false, result_mvpMatrix_translation_rotation, 0);
int color_ID_for_current_part;
for (int parts_ID = 0; parts_ID < 4; parts_ID++) {
color_ID_for_current_part = object_color[object_ID][parts_ID];
for (int color_ID = 0; color_ID < 4; color_ID++) /// color_ID = 0,1,2,3
{
/// 0,1,2,3 0 0,1,2,3
color_matrix[color_ID] = colors[color_ID_for_current_part][color_ID];
}
//// Draw the part parts_ID
// Set color for drawing the part 1
GLES20.glUniform4fv(colorHandle, 1, color_matrix, 0);
//// Rotate n * 90 degree ///// (90도씩 회전하면서 색이 변화함)
Matrix.setIdentityM(mRotationMatrix, 0);
Matrix.rotateM(mRotationMatrix, 0, Quard[parts_ID], 0, 0, -1.0f);
Matrix.multiplyMM(result_mvpMatrix_translation_rotation90, 0, result_mvpMatrix_translation_rotation, 0, mRotationMatrix, 0);
//// Implement the effect of rotation and projection
GLES20.glUniformMatrix4fv(vPMatrixHandle, 1, false, result_mvpMatrix_translation_rotation90, 0);
// Draw using vertexes part 2
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_FAN, object_shape[object_ID][parts_ID], 12);
///// Animation updates
Angles[object_ID] = Angles[object_ID] + d_Angles[object_ID];
// float d_Angles[] = {1.0f, 0.5f, 5.0f,10.0f};
///// 0 x
object_centers[object_ID][0] = object_centers[object_ID][0] + object_d_xy[object_ID][0]; //// x = x + d_x
/// 0.31 0.3 0.01
object_centers[object_ID][1] = object_centers[object_ID][1] + object_d_xy[object_ID][1]; ///// y = y + dy
if ((object_centers[object_ID][0] > 0.5) || (object_centers[object_ID][0] < -0.5)) {
object_d_xy[object_ID][0] = -object_d_xy[object_ID][0]; /// dx = 0.01f -> dx = -0.01f
}
if ((object_centers[object_ID][1] > 0.8) || (object_centers[object_ID][1] < -0.8)) {
object_d_xy[object_ID][1] = -object_d_xy[object_ID][1]; /// dy = 0.01f -> dy = -0.01f
}
// float object_centers[][] = {{0.3f, 0.3f}, ///// object 1
// {0.3f, -0.3f}, ///// object 2
// {-0.3f,0.3f}, ///// object 3
// {-0.3f,-0.3f}}; ///// object 4
}
}
// Disable vertex array
GLES20.glDisableVertexAttribArray(positionHandle);
}
private final String fragmentShaderCode =
"precision mediump float;" +
"uniform vec4 vColor;" +
"void main() {" +
" gl_FragColor = vColor;" +
"}";
}
'실시간 운영체제' 카테고리의 다른 글
[실시간 운영체제] Open GL Draw house pt.2 (0) | 2023.06.17 |
---|---|
[실시간 운영체제] Open GL Draw different shapes (0) | 2023.06.17 |
[실시간 운영체제] Open GL animation (0) | 2023.06.15 |
[실시간 운영체제] Open GL translation and rotaion (0) | 2023.06.15 |
[실시간 운영체제] Open GL Draw house and circles (0) | 2023.06.15 |